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LETTER TO THE EDITOR 

Continuum percolation with discs having a distribution of 
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Received 7 March 1984 

Abstract. I t  is shown that for continuum percolation with overlapping discs having a 
distribution of radii, the net areal density of discs at percolation threshold depends 
non-trivially on the distribution, and is not bounded by any finite constant. Results of a 
Monte Carlo simulation supporting the argument are presented. 

Although most of the physical systems modelled by percolation are basically continuum 
systems, the problem itself has been studied mostly in its discrete version (on lattices). 
Even in the continuum case, most of the interest has been centred on percolation of 
equal-sized discs (or spheres in three dimensions), mainly dealing with the question 
whether discrete and continuum percolation problems are in the same universality 
class (Vicsek and Kertesz 1981, Gawlinski and Stanley 1981). In physical systems, the 
requirement that all percolating units be of equal size is hardly satisfied. A special 
case in which percolation of basic units (say spheres) having a distribution of sizes 
becomes important is the phenomenon of phase inversion as observed in stirred 
mixtures of immiscible liquids (say oil and water). Consider oil being slowly added 
to water, and the mixture constantly agitated by a stirrer. If the total amount of oil 
added is small, it forms random-sized droplets in the background of water. On 
increasing the oil fraction, the system goes through an intermediate phase (in which 
both oil and water may be said to form spanning clusters) to a phase with water 
droplets dispersed in oil. The exact value of critical concentration of oil when the 
oil-in-water phase disappears depends on the distribution of radii of the oil droplets 
in water (this may be controlled by changing the stimng speed. etc., see Clarke and 
Sawistowski 1978), the detailed dynamics of droplet coalescence etc. In this paper, 
we shall ignore the complications of dynamics and study the related geometrical 
problem of random percolation of overlapping discs with a distribution of radii. 

Recent studies of continuum percolation of random-sized basic units have employed 
the Monte Carlo renormalisation group technique (Kertesz and Vicsek 1982) and the 
straightforward Monte Carlo method (Gawlinksi and Redner 1983). One of the results 
of Kertesz and Vicsek was that for a large class of distributions of disc radii, the 
average fractional area covered at the percolation threshold was 0.70 f 0.02, and they 
conjectured that it might be ‘constant for a large class of distributions’. For earlier 
references on this ‘critical volume fraction’ rule see Scher and Zallen (1970), and Pike 
and Seager (1974). In the following, we argue that his conjecture is only approximate. 
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In fact, one can construct distributions for which the average fractional area covered 
by at least one of the discs is arbitrarily close to 1 at the percolation threshold. We 
present some Monte Carlo results in support of our arguments. 

Consider continuum disc percolation in two dimensions (the argument is easily 
generalised to higher dimensions). The positions of centres of discs are uniformly 
distributed on a two-dimensional plane, n( R) d R  dA being the probability that the 
centre of the disc having radius between R and R +dR lies inside a small area dA. 
The total area of discs per unit area of the plane is 

p = .rrR’n(R) dR, 

p will be caled the areal density of the discs. The average fractional area of the plane 
that is covered by at least one of the discs is easily shown to be 1 - exp( - p ) .  In the 
case of percolation of discs of equal radii, it is easy to see that the areal density of 
the discs at the percolation threshold is independent of the size of the discs. Let this 
critical value of p be denoted by p*.  The numerical value of p* is 1.20*0.07, which 
corresponds to a critical covered area fraction = 0.70* 0.02 (Kertesz and Vicsek 1982). 
Constancy of the critical covered area fraction wodld imply that if p = p * ,  the system 
would be at percolation threshold independent of the details of the distribution n(R).  

We consider, first, the special case when the radii of discs can take only two allowed 
values R I  and R2. Let p I  be the areal density of discs of radius R I .  We assume that 
p I  < p * ,  so that the system is subcritical and has a finite correlation length tl. By 
length scaling, we can write = R J ( p l ) ,  where f ( x )  is the correlation length of a 
system of discs with radius 1 and density x. We now randomly drop discs of radius 
R2 on the plane until the critical threshold is reached. Let the areal density of R2-discs 
at this time be p2. The critical areal density at percolation threshold for this two-valued 
radius distribution is 

The value of p2, and hence pc, depends on p i  and R2/RI,  and is in general expected 
to be a complicated function. Its value can be determined in some limiting cases. 

If R 2 =  R, ,  clearly pc is equal to p * ,  the critical density for single-sized disc 
percolation and p2 = p* - p I .  

Consider now the case R2 >> & 3 RI.  We drop a single disc of radius R2 on a plane 
with areal density p I  of the RI-disc. For large R2,  for most configurations, the cluster 
containing this R2-disc and connected R I  discs is roughly circular in shape with radius 
( R 2 + a t 1 )  (figure I ) .  Here a is a finite constant with numerical value -1. Thus the 
effect of the background of R,-discs on the percolation of R2-discs is to increase the 
effective radius of R2-discs to a value ( R2 + atl) .  Two R,-discs dropped near each 
other will usually belong to the same cluster if their centres are separated by a distance 
less than 2(R2 +a(,). On the other hand, if the distance is much greater than this, the 
probability that there is a connecting path between them through RI-disc clusters is 
very small. 

Each R2-disc gives rise to an approximately circular cluster of radius ( R2 + at1). 
Percolation occurs over macroscopic distances if these effective discs have sufficient 
overlap with each other to form an infinite cluster. It is thus easy to see that to a very 
good approximation the percolation threshold is reached when the areal density of 
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Figure 1. A disc of large radius dropped in the background of a finite areal density of 
small discs. The corresponding cluster is roughly circular in shape. The broken circle 
denotes the perimeter of the disc which approximates the cluster. 

these effective discs is p g .  Hence 

P2--P*(l +a51/R2)-2 (3) 

p c = p I  +p*(l  +a51/R2)-2. (4) 

and 

As R2 tends to infinity, pc tends to the value p ,  + p * .  This result is easily seen to be 
correct independent of the approximations used to obtain equation (3). Since 
0 < p,  < p* ,  we get in this limit 

p* < pc < 2p*. ( 5 )  

In the limit Rs<< R I ,  the same argument can be repeated after interchanging the 
roles of R I  and R2. Thus pc tends to a value ( p l  + p * )  as ( R 2 / R I )  tends to zero or 
infinity; but has a lower value = p* if R2/ R I  = 1. This qualitative behaviour is shown 
in figure 2. 

A similar argument with n types of discs with radii Ri( i  = 1 to n) satisfying 
R i + ,  >> R f (  p i )  >> R, shows that pc can be arbitrarily close to np*, if the disc-sizes are 
widely different from each other. Thus the critical areal density pc is not bounded by 
any finite constant for arbitrary distributions n( R ) .  

I I A 1  
0 1 Y m  

R219 -+ 

Figure 2. Schematic variation of the critical areal density pc with the ratio of radii of discs 
( R J R , )  for several values of p, .  Curves A, B, C correspond to increasing values of 
pI : 0 = pIA < p l e  < p l c  < p + ,  the critical density for single-sized disc percolation. For larger 
p I ,  the value of pc in the limits R J R ,  = O  or 03, is larger, but is reached more slowly. 
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We performed a Monte Carla simulation to test the validity of the arguments 
presented above. We took a square of size J800 xJ800 units (with periodic boundary 
conditions) and filled it randomly with discs of radius RI  = 1 unit with average areal 
density pI.  We then determined pz by randomly placing discs of radius R2 till a 
spanning cluster across the square is formed. To decrease the fluctuations in p 2 ,  we 
average over several ( 3 5 )  realisations of R,-discs keeping the configuration of R I  -discs 
fixed. To partially cancel the effect of fluctuations in the Rl-disc clusters, we compare 
p 2  with the values p i ,  the average areal density of R2-discs needed to reach the 
percolation threshold if R 2 =  RI.  Finally we average over several (- 10) configurations 
of R,-discs. 

The results of the simulation are summarised in table 1. We see that even for a 
fairly small value, 0.35, of R2/RI,  p2 is approximately equal to p i  suggesting that 
p c = p * .  This is in agreement with the observation of Kertesz and Vicsek. However, 
for an even smaller value R2/ R I  = 0.25, we see that p2 is significantly larger than p;,  
in agreement with our conclusions presented above. If ( R2/ R,)  is very small, p 2  should 
tend to p * .  We were unable to verify this conclusion, as the computer time becomes 
very large as the number of discs in the sample increases. (The total number of discs 
at criticality in our simulation is -1500 for R2=0.35 and approximately 2500 for 
R2=0.25.) The value of p* = 1.13i0.01 in our simulation is somewhat less than the 
value reported by Kertesz and Vicsek. This is due to finite size effect. Ideally, one 
would like to determine the critical threshold for several sizes of the lattice, and then 
extrapolate the results to infinite size limit. We have not carried out this procedure, 
mainly because of the large computer time involved. However, the finite size correction 
for R2/ R I  = 0.25, should not differ too much from that for R2/ RI  = 0.35, and clearly 
cannot account for the observed increase of p2. 

We thus conclude that the Monte Carlo experiments support our theoretical predic- 
tion that the critical areal density is significantly larger than p* ,  if the radii of discs 
ave a large range of allowed values. However, this effect is significant only if the ratio 
of radii is typically bigger than three. In the case of continuous distribution of radii 
of the type studied by Kertesz and Vicsek, most of the weight of the distribution is 
concentrated between fRo and 2Ro, where Ro is the median radius of the distribution. 
This effect is thus too small to be observable in their Monte Carlo simulations. 

Table 1. Results of the Monte Carlo simulation of continuum percolation in two dimensions 
with two sizes of discs. p I  is the areal density of large-sized discs. p2 is the average areal 
density of the smaller discs that have to be added to the sample in order to form a spanning 
cluster. p; is the average areal density that would have been needed if the new discs were 
of same radius as the earlier placed once ( R ,  = R , ) .  The error bars are determined from 
the spread of observed values and do not take into account systematic corrections like the 
finite size effects. 

Ratio of 
radii of discs PI Pz P i  

0.55 0.604*0.01 I 0.598 * 0.006 
0.70 0.424* 0.013 0.437 * 0.006 

0.60 0.557 f 0.016 0.508 f 0.009 
0.25 0.70 0.5 14 f 0.012 0.444 f 0.009 

0.80 0.388 f 0.023 0.301 f 0.009 

0.35 
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